Anisotropic Constitutive Model of Human Brain with Intravoxel Heterogeneity of Fiber Orientation Using Diffusion Spectrum Imaging (dsi)

نویسندگان

  • Harsha T. Garimella
  • Hao Yuan
  • Semyon L. Slobounov
  • Reuben H. Kraft
چکیده

Sports-related concussion is a major public health problem in the United States that is estimated to occur in 1.6–3.8 million individuals annually, and is particularly common in football. Despite the significance and growing concerns about the potential long-term consequences of concussion, its biomechanical mechanisms are not fully understood. Since 1970’s computational head modeling has proved to be an efficient tool for establishment of health injury criteria and studies on head injury mitigation. One important step in the computational modeling of the human head is to develop the mathematical material models (constitutive models) for the tissue. There have been many attempts to develop an accurate constitutive model for brain tissue. Recent experimental studies have highlighted the significant influence of axonal fibers on the non-linear and anisotropic behavior of brain tissue. Tractography based on diffusion tensor imaging (DTI) has been used in various previous studies to develop a constitutive model for human brain by including the anisotropic properties. Though DTI provides a macro scale information about the axonal fibers in the brain, it cannot directly describe multiple fiber orientations within a single voxel. To address this limitation within the DTI tractography, Diffusion Spectrum imaging (DSI), a variant of Diffusion Weighted Imaging, is used. DSI is generally used in deriving connectome sets and is sensitive to intravoxel heterogeneities of fiber orientation in diffusion direction caused by crossing fiber tracts and thus allowing for more accurate mapping of axonal trajectories than other diffusion methods. Thus more accurate constitutive models can be developed from the structural information about the human brain using DSI. This paper extends, the anisotropic constitutive models developed previously, for two family of fibers which will be useful in the computational modeling of the human brain using DSI.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers

MRI tractography is the mapping of neural fiber pathways based on diffusion MRI of tissue diffusion anisotropy. Tractography based on diffusion tensor imaging (DTI) cannot directly image multiple fiber orientations within a single voxel. To address this limitation, diffusion spectrum MRI (DSI) and related methods were developed to image complex distributions of intravoxel fiber orientation. Her...

متن کامل

Validation of diffusion spectrum magnetic resonance imaging with manganese-enhanced rat optic tracts and ex vivo phantoms.

Diffusion spectrum imaging (DSI) has been demonstrated to resolve crossing axonal fibers by mapping the probability density function of water molecules diffusion at each voxel. However, the accuracy of DSI in defining individual fiber orientation and the validity of Fourier relation under finite gradient pulse widths are not assessed yet. We developed an ex vivo and an in vivo model to evaluate...

متن کامل

Mapping the orientation of intravoxel crossing fibers based on the phase information of diffusion circular spectrum.

A new method is presented to map the orientation of intravoxel crossing fibers by using the phase of the diffusion circular spectrum harmonics. In a previous study [Zhan, W., Gu, H., Xu, S., Silbersweig, D.A., Stern, E., Yang, Y., 2003. Circular spectrum mapping for intravoxel fiber structures based on high angular resolution apparent diffusion coefficients. Magn. Reson. Med. 49, 1077-1088], we...

متن کامل

High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity.

Magnetic resonance (MR) diffusion tensor imaging (DTI) can resolve the white matter fiber orientation within a voxel provided that the fibers are strongly aligned. However, a given voxel may contain a distribution of fiber orientations due to, for example, intravoxel fiber crossing. The present study sought to test whether a geodesic, high b-value diffusion gradient sampling scheme could resolv...

متن کامل

In vivo diffusion spectrum imaging of non-human primate brain: initial experience in transcallosal fiber examination.

In comparison with conventional diffusion tensor imaging (DTI) technique, diffusion spectrum imaging (DSI) allows for delineating crossing and touching fibers in the brain and has been explored in clinical and preclinical studies. Non-human primates (NHPs) resemble most aspects of human and are widely employed in various neuroscience researches and pharmaceutical development. In the present stu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014